Volatility Smiles

APPENDIX

DETERMINING IMPLIED RISK-NEUTRAL DISTRIBUTIONS FROM VOLATILITY SMILES

The price of a European call option on an asset with strike price K and maturity T is given by

 $c = e^{-rT} \int_{S_{T}-K}^{\infty} (S_T - K) g(S_T) dS_T = e^{rT} \int_{K}^{\infty} S_T g(S_T) - kg(S_T) dS_T$

where r is the interest rate (assumed constant), S_T is the asset price at time T, and g is the risk-neutral probability density function of S_T . Differentiating once with respect to K gives

$$\frac{\partial c}{\partial K} = -e^{-rT} \int_{S_T = K}^{\infty} g(S_T) \, dS_T$$

Differentiating again with respect to K gives $\frac{\partial C}{\partial k} = e^{-tT} \left[\frac{\partial}{\partial k} \int_{k}^{\infty} \int_{k}^{\infty} g(s_{T}) ds_{T} - \frac{\partial}{\partial k} k \int_{k}^{\infty} g(s_{T}) ds_{T} \right]$ $\frac{\partial^2 c}{\partial K^2} = e^{-rT} g(K) = e^{-rT} \left[(-Kg(K)) - \int_{K}^{\infty} g(S_T) dS_T + Kg(K) \right]$ $= -e^{-rT} \int_{K}^{\infty} g(S_T) dS_T.$ The positive function a is given by:

469

This shows that the probability density function g is given

ensity function
$$g$$
 is given by
$$g(K) = e^{rT} \frac{\partial^2 c}{\partial K^2} \frac{\partial^2 c}{\partial K^2} = -e^{rT} \frac{\partial}{\partial K} \int_{K}^{\infty} g(S_T) dS_T.$$

$$= e^{rT} g(K)$$
and Litzenberger (1978), allows risk-neutral prob-

This result, which is from Breeden and Litzenberger (1978), allows risk-neutral probability distributions to be estimated from volatility smiles. Suppose that c_1 , c_2 , and c_3 are the prices of T-year European call options with strike prices of $K - \delta$, K, and $K + \delta$, respectively. Assuming δ is small, an estimate of q(K), obtained by approximating the partial derivative in equation (20A.1), is

$$e^{rT} \frac{c_1 + c_3 - 2c_2}{\delta^2}$$

For another way of understanding this formula, suppose you set up a butterfly spread with strike prices $K - \delta$, K, and $K + \delta$, and maturity T. This means that you buy a call with strike price $K - \delta$, buy a call with strike price $K + \delta$, and sell two calls with strike price K. The value of your position is $c_1 + c_3 - 2c_2$. The value of the position can also be calculated by integrating the payoff over the risk-neutral probability distribution, $g(S_T)$, and discounting at the risk-free rate. The payoff is shown in Figure 20A.1. Since δ is small, we can assume that $g(S_T) = g(K)$ in the whole of the range $K - \delta < S_T < K + \delta$, where the payoff is nonzero. The area under the "spike" in Figure 20A.1 is $0.5 \times 2\delta \times \delta = \delta^2$. The value of the payoff (when δ is small) is therefore $e^{-rT}g(K)\delta^2$. It follows that

$$e^{-rT}g(K)\delta^2 = c_1 + c_3 - 2c_2$$

⁷ See D. T. Breeden and R. H. Litzenberger, "Prices of State-Contingent Claims Implicit in Option Prices," Journal of Business, 51 (1978), 621-51.

470 CHAPTER 20

Figure 20A.1 Payoff from butterfly spread.

which leads directly to

$$g(K) = e^{rT} \frac{c_1 + c_3 - 2c_2}{\delta^2}$$
 (20A.2)

Example 20A.1

Suppose that the price of a non-dividend-paying stock is \$10, the risk-free interest rate is 3%, and the implied volatilities of 3-month European options with strike prices of \$6, \$7, \$8, \$9, \$10, \$11, \$12, \$13, \$14 are 30%, 29%, 28%, 27%, 26%, 25%, 24%, 23%, 22%, respectively. One way of applying the above results is as follows. Assume that $g(S_T)$ is constant between $S_T = 6$ and $S_T = 7$, constant between $S_T = 7$ and $S_T = 8$, and so on. Define:

$$g(S_T) = g_1$$
 for $6 \le S_T < 7$
 $g(S_T) = g_2$ for $7 \le S_T < 8$
 $g(S_T) = g_3$ for $8 \le S_T < 9$
 $g(S_T) = g_4$ for $9 \le S_T < 10$
 $g(S_T) = g_5$ for $10 \le S_T < 11$
 $g(S_T) = g_6$ for $11 \le S_T < 12$
 $g(S_T) = g_7$ for $12 \le S_T < 13$
 $g(S_T) = g_8$ for $13 \le S_T < 14$

The value of g_1 can be calculated by interpolating to get the implied volatility for a 3-month option with a strike price of \$6.5 as 29.5%. This means that options with strike prices of \$6, \$6.5, and \$7 have implied volatilities of 30%, 29.5%, and 29%, respectively. From DerivaGem their prices are \$4.045, \$3.549, and \$3.055, respectively. Using equation (20A.2), with K = 6.5 and $\delta = 0.5$, gives

$$g_1 = \frac{e^{0.03 \times 0.25} (4.045 + 3.055 - 2 \times 3.549)}{0.5^2} = 0.0057$$

Similar calculations show that

$$g_2 = 0.0444$$
, $g_3 = 0.1545$, $g_4 = 0.2781$
 $g_5 = 0.2813$, $g_6 = 0.1659$, $g_7 = 0.0573$, $g_8 = 0.0113$

Volatility Smiles 471

Figure 20A.2 Implied probability distribution for Example 20A.1.

Figure 20A.2 displays the implied distribution. (Note that the area under the probability distribution is 0.9985. The probability that $S_T < 6$ or $S_T > 14$ is therefore 0.0015.) Although not obvious from Figure 20A.2, the implied distribution does have a heavier left tail and less heavy right tail than a lognormal distribution. For the lognormal distribution based on a single volatility of 26%, the probability of a stock price between \$6 and \$7 is 0.0031 (compared with 0.0057 in Figure 20A.2) and the probability of a stock price between \$13 and \$14 is 0.0167 (compared with 0.0113 in Figure 20A.2).